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Società Italiana di Fisica
Springer-Verlag 1999

Size dependence of dielectric properties and structural
metastability in ferroelectrics

L. Zhanga, W.L. Zhong, C.L. Wang, Y.P. Peng, and Y.G. Wang

Department of Physics, Shandong University, Jinan, 250100, P.R. China

Received 3 August 1998 and Received in final form 22 November 1998

Abstract. The size effect of the dielectric properties and the barrier height was investigated in the fer-
roelectric solid solution BaxSr1−xTiO3 system. The decrease of the grain size causes the suppression of
the ferroelectricity, and the increase of the relaxation frequency. Barrier heights increase with increasing
grain size. The result is analogous to magnetic phase transitions in nanocrystals and other solid-solid phase
transitions in nanocrystals. It suggests a general rule that may be of use in the discovery of new metastable
phases. An explanation of this phenomenon was given by an electric potential model that agrees well with
the experimental results. For BaxSr1−xTiO3 system, the decrease of x causes the decrease of the barrier
height.

PACS. 77.22.Gm Dielectric loss and relaxation – 77.80.Bh Phase transitions and Curie point – 77.80.-e
Ferroelectricity and antiferroelectricity

1 Introduction

In order to expand the range of available ferroelectric ma-
terials, it is important to discover pathways that lead to
metastable, high-energy structures. Sometimes, a high-
energy form of a ferroelectric is observed to persist indef-
initely at ambient conditions. A general understanding of
what determines the energy barriers between crystal struc-
tures does not currently exist. However, the first-principles
calculation has caused an increasing understanding of the
ground state properties of ferroelectrics recently. First-
principles LAPW calculations [1,2] explained the decrease
of the Curie temperature of BaTiO3 with hydrostatic
pressure [3]. It indicated that the potential surface was
strongly dependent on cell volume of BaTiO3 in eight-site
potential model [4,5], and the potential wells in cells would
become much shallower as pressure was increased [1,2].
Obviously, it is a very important result. Furthermore, the
development of routine syntheses of nanocrystals creates
the opportunity to study metastability as a function of a
new variable, the size of the crystal. Such experiments
may be analogous to studies of supercooling in liquid
droplets [6,7]. Nanosized ferroelectric particles have prop-
erties that are significantly different from those of the cor-
responding bulk materials. For example, in ferroelectric
phase, they are single-domain particles and the polariza-
tion direction fluctuates spontaneously. Their dielectric re-
laxation frequency is given by

fr = fr0 exp
(
− h

kT

)
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where fr0 is a constant, h is the energy barrier, k is the
Boltzmann constant, and T is the temperature.

In this study we investigated the dielectric phenomena
of BaxSr1−xTiO3 (x = 0.3, 0.5, 0.7) ceramics of various
grain size, and obtain the information on their relative
barrier height. The solid solution BaxSr1−xTiO3 and its
end member BaTiO3 both have perovskite structure. Sim-
ilar to BaTiO3, BaxSr1−xTiO3 for high concentration x
[8,9] also has three phase transitions (trigonal-
orthorhombic, orthorhombic-tetragonal, tetragonal-
cubic). Our previous work [9,10] showed that the
variation of Tc in BaxSr1−xTiO3 was determined by
changes in the cell volume. Furthermore, we found that
the change of order and diffuseness of phase transition in
BaxSr1−xTiO3 could be attributed to a cell volume effect.
The mechanism of successive transitions of BaxSr1−xTiO3

should be similar to that of BaTiO3 . Thus BaxSr1−xTiO3

become a suitable system to study the size effect of the
energy barrier of ferroelectrics systematically.

2 Experiment

The ultrafine BaxSr1−xTiO3 (x = 1, 0.7, 0.5 0.3) parti-
cles with high crystallinity were prepared by the sol-gel
method [11]. The ceramics with different grain size were
obtained by altering the firing conditions. The atmosphere
during firing is air. For x = 0.7, 0.5 and 0.3, the grain
sizes of the ultrafine particles as starting materials are
170 nm, 260 nm and 130 nm respectively. The work on
the dielectric behavior of BaTiO3 ceramics was reported
in reference [11].
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Table 1. Grain size and density of BaxSr1−xTiO3 ceramics.

material Ba0.7Sr0.3TiO3

grain size(nm) 200 220 260 370 1100 1860

density(%) 49 55 60 66 79 82

material Ba0.5Sr0.5TiO3

grain size(nm) 330 375 600 860 1010 1610

density(%) 54 61 76 79 81 82

material Ba0.3Sr0.7TiO3

grain size(nm) 230 475 1900 2970 - -

density(%) 44 44 45 46 - -

The dielectric properties of the samples were measured
as a function of temperature using a HP 4192A impedance
analyzer in the temperature range from 10 K to 400 K.
They were also measured as a function of frequency using
the HP 4192A impedance analyzer (10 Hz ∼ 10 MHz) and
a HP 4191A impedance analyzer (1 MHz ∼ 1000 MHz).

The grain size, shape, and size distribution were stud-
ied by electron microscopy. Table 1 shows average grain
size and density of BaxSr1−xTiO3 ceramics.

Some samples were chosen for stoichiometry analysis.
The total stoichiometry was obtained by using a VRA-20
X-ray fluorescence spectrometer. The result showed that
they had a standard stoichiometry of BaxSr1−xTiO3. The
surface composition of the BaTiO3 powder samples and
ceramics samples was analyzed using a VG Scientific Esc-
slab MK II X-ray photoelectron spectrometer. The mea-
sured surface ratio of Ba/Ti is between 0.98 and 1.05.

An X-ray-diffraction study at room temperature
showed that all of the samples were single-phase per-
ovskite solid solutions. For all of the samples, the (100)
peak and (001) peak can not be distinguished from each
other, and neither the (200) and (002) peak. The dielectric
measurement showed that the Tc of the Ba0.7Sr0.3TiO3

samples with large grain size were above room tempera-
ture. Thus the structure of the large-grain Ba0.7Sr0.3TiO3

ceramics should be pseudo-cubic at room temperature.
The other samples are cubic.

3 Results and discussion

Considering the porosity of the samples, the dielectric
constant was calculated by taking the samples to be 0-3
composite of BaxSr1−xTiO3 particles and air [12]. A “0-3
composite” is a two-component composite in which one
component is zero-dimensional (particles) and the other
component is the three-dimensionally connected matrix.
The porosity of the samples was calculated by comparing
the measured density with the theoretical one.

We measured the temperature dependence of the di-
electric constant ε at 100 kHz for BaxSr1−xTiO3 (x = 0.7,
0.5, 0.3) samples of different grain size. Figure 1 shows
the temperature dependence of the dielectric constant
of BaxSr1−xTiO3 ceramics. All these measurements were
performed during the cooling cycle. With the decrease

Fig. 1. The temperature dependence of the dielectric constant
of the BaxSr1−xTiO3 with different mean grain sizes. (a) x =
0.7, (b) x = 0.5, (c) x = 0.3.

of grain size, the dielectric peaks of our samples become
smaller and broader and eventually disappear. The ferro-
electric Tc is identified as the temperature correspond-
ing to the maximum value of the dielectric constant.
Figure 2 shows the grain size dependence of Tc of the
BaxSr1−xTiO3 ceramics. It is seen that the Curie tem-
perature decreases with decreasing grain size. The dashed
line drawn through the data points is the result obtained
from an empirical equation [13–15]:

Tc(D) = Tc(∞)− C/(D −Ds) (K) (1)
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Fig. 2. Grain size dependence of Tc for BaxSr1−xTiO3 ceram-
ics. The dashed line drawn through the data points is the result
obtained from equation (1).

where C andDs are two constants,D the grain size, Tc(∞)
the bulk Curie temperature. For x = 0.7, 0.5 and 0.3,
Tc(∞) is taken to be 316 K, 219 K and 128 K, C is taken
to be 1000 K nm, 1300 K nm and 8600 K nm, and Ds is
taken to be 173 nm, 240 nm, and 250 nm respectively. If
we define a critical size Dcrit as the size at which Tc =
0 K, then, from the equation, Dcrit = 176 nm, 246 nm
and 317 nm respectively for x = 0.7, 0.5 and 0.3. Thus
the ferroelectric critical size increases with decreasing x.
The samples should be free of defect effect because the
sintering temperature is high. Thus one can conclude that
size can strongly affect the ferroelectricity.

Figures 3, 4 and 5 show the ε′/ε′′ versus f (f : 1 MHz ∼
450 MHz) for x = 0.7, 0.5 and 0.3. In Figures 3, 4, and 5,
ε′ has a sharp drop with increasing frequency for every
sample. In the same frequency range, ε′′ shows a peak. Fur-
thermore, an important feature is that the maximum of ε′′
shifts to higher frequency as the grain size decreases. For
x = 0.7 and 0.5, the ε′′ curve is flat for the smallest grain
in the measurement frequency region. However, ε′′ shows
an obvious peak for the smallest grain of Ba0.3Sr0.7TiO3.
The variations of the relaxation frequency with grain size
are shown in Figure 6 for x = 0.7, 0.5 and 0.3. It is seen
that the relaxation frequency increases rapidly with de-
creasing grain size when the grain is small. When grain
size is near or larger than 1 µm, the relaxation frequency
is independent of the grain size. Furthermore, it is seen
that the decrease of x causes the increase of the relax-
ation frequency for coarse grained ceramics.

Dielectric dispersion in BaTiO3 single crystals as well
as ceramics [16] has been observed in the vicinity of the
phase transition temperature. The critical slowing down of
the relaxation frequency [16], was supposed to be associ-
ated with the hopping of off-centre Ti4+ ions in eight-site
potential [4,5]. In BaxSr1−xTiO3 [16,17], the relaxation
process also exhibits critical behaviour in the vicinity of
the dielectric peak temperature Tc. The high-frequency
relaxations appear when the temperature is near or above
Tc. Our dielectric measurement showed that the Tc of
Ba0.7Sr0.3TiO 3 samples was near the room temperature,

Fig. 3. Frequency dependence of ε′ and ε′′ for Ba0.7Sr0.3TiO3

ceramics of different grain size at room temperature.

and those of the samples for x = 0.5, 0.3, were lower
than the room temperature. In addition, the room tem-
perature X-ray diffraction showed that they were all cubic
or pseudo-cubic structure. Therefore, the dielectric relax-
ation in BaxSr1−xTiO3 can also be explained by means of
the above eight-site potential model.

Now we discuss the relation between the relaxation fre-
quency and the grain size according to a double-potential-
well model, which is a simplification of the eight-site po-
tential. Figure 7 shows a double-potential-well, where h is
the height of the potential barrier. In the double-potential-
well model, the relaxation frequency can be written as:

fr = 2
w0

2π
exp

(
− h

kT

)
(2)

where w0/2π is the oscillation frequency of the Ti ion, h
the height of the potential barrier.

In the discussion of the grain size effect on the
room temperature relaxation frequency, the T and w0 in
equation (2) can be considered as constant. Therefore, we
only need to discuss the grain size effect on the height h.
For any calculation, the establishment of a suitable po-
tential function of the double- potential-well is essential.
In the molecular-dynamics calculation [18], the following



568 The European Physical Journal B

Fig. 4. Frequency dependence of ε′ and ε′′ for Ba0.5Sr0.5TiO3

ceramics of different grain size at room temperature.

pair potential was used:

uij =
QiQje

2

4πε0rij
+ f0(bi + bj) exp

(
ai + aj − rij
bi + bj

)
− Cij
r6
ij

·

(3)

This potential consists of an ionic two-body Coulomb in-
teraction (first term), a Born-Mayer-type repulsive inter-
action (second term), and a van der Waals’ attractive
interaction (third term). Qi and Qj are respectively the
charges of the i ion and j ion, separated by distance rij .
Furthermore, ai, aj and bi, bj are potential parameters
corresponding to the ionic radius and ionic stiffness, re-
spectively. The parameter Cij is applied to only oxygen
interaction. In equation (3), the Born-Mayer-type repul-
sive interaction has a negative exponent relation with rij .
When rij � the lattice constant, the second term is much
lower than the first term. Therefore, the second term and
third term will be ignored when we discuss the size effect
of the relaxation frequency.

Figure 8 is a spherical crystal grain, its radius is R. We
build an X ′ − Y ′ − Z ′ coordinate system, the three axes
of the system are along the [001], [010], [100] respectively.
We consider a unit cell in the centre of the grain. The
centre of the cell is (0, 0, 0). We suppose that the sphere

Fig. 5. Frequency dependence of ε′ and ε′′ for Ba0.3Sr0.7TiO3

ceramics of different grain size at room temperature.

Fig. 6. Grain size dependence of the relaxation frequency for
Bax Sr1−xTiO3 ceramics. The dashed line is drawn as a guide
to the eye. The solid curves 1 and 2 are the calculation results
of Ba0.7Sr0.3 TiO3 and Ba0.3Sr0.7TiO3 from equation (11).

consists of part 1 and part 2. Part 1 is the inner spheric
part with radius R′ (R′ � lattice constant).

For the double-potential-well in the centre crystal cell,
we suppose that the well is at (x, y, z), and the barrier is
at (x, y, 0), x, y, z � R′. In Figure 8, when R′ →∞, the
internal surface of part 2 can be considered as an equal-
potential surface. Therefore, part 2 will not cause any
modulation of the electric potential near the sphere centre.
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Fig. 7. A double-potential-wells.

Fig. 8. A crystal grain in X′ − Y ′ − Z′ coordinate system.

With the R′ decreasing, the internal surface of part 2 can
not be considered as an equal-potential surface, so part 2
will affect the height h.

Now we calculate the contribution of part 2 to the
electrical potential in paraelectric phase. According to
the lattice symmetry of the perovskite structure, part 2
can be divided into the following n units. In every unit,
the positions of the two ions can be written as (X,Y, Z),
(X,Y,−Z).

Now we calculate the effect of the two ions on the
height h. The potential φ at point (x, y, 0) is:

φ =
QQ(Ti)

4πε0
2√

(X − x)2 + (Y − y)2 + Z2

≈ QQ(Ti)
4πε0

2r
1

r2 −Xx− Y y

where r =
√
X2 + Y 2 + Z2, Q is the charge of the two

ions, Q(Ti) is the charge of the Ti ion at the centre cell.
The potential φ′ at point (x, y, z) is:

φ′ =
QQ(Ti)

4πε0

(
1√

(X − x)2 + (Y − y)2 + (Z + z)2

+
1√

(X − x)2 + (Y − y)2 + (Z − z)2

)

≈ QQ(Ti)
4πε0

2r
r2 −Xx− Y y

(r2 −Xx− Y y)2 − z2Z2
·

Thus the ∆φ of the two ion is:

∆φ2 = φ− φ′ =
QQ(Ti)

4πε0
2r

−z2Z2

(r2 −Xx− Y y)3

≈ QQ(Ti)
4πε0

−2z2Z2

r5
·

In a spheric coordinate system:

∆φ2 = − 2
4πε0

QQ(Ti)
r3

cos2 θz2.

Equivalently, the ∆φ of one ion is:

∆φ1 = − 1
4πε0

QQ(Ti)
r3

cos2 θz2.

In the above, the positions of the two ions are
(X,Y, Z), (X,Y,−Z). An identical result of the ∆φ1

can be obtained if we suppose that the positions are
(X,Y, Z) and (−X,Y, Z), or (X,Y, Z) and (X,−Y,Z).
For BaxSr1−xTiO3, we suppose that the charges of A, B,
O ions are Q1, Q2, Q3 (Q1 +Q2 + 3Q3 = 0) respectively.
To express the different positions of the three ions, we at-
tach three displacements s, t, u (s, t, u� R′) to the r in
∆φ for A, B, O ions respectively. In the spheric coordi-
nate system, the s, t, u should be functions of θ and ϕ,
but independent of r. Thus:

∆φA = − 1
4πε0

Q1Q(Ti)
(r + s)3

cos2 θz2

∆φB = − 1
4πε0

Q2Q(Ti)
(r + t)3

cos2 θz2 (4)

∆φO = − 1
4πε0

Q3Q(Ti)
(r + u)3

cos2 θz2.

The ∆φ caused by a crystal cell is:

∆φcell = ∆φA +∆φB + 3∆φO ≈ −
Q(Ti)
4πε0

× 3(Q2+3Q3)s+3(Q1+3Q3)t+3(Q1+Q2)u
r4

cos2 θz2.

Therefore, the ∆φ caused by part 2 is:

∆φpart2 =∫∫∫
1
a3
∆φcellr

2 sin θdrdθdϕ = β′
(

1
R′
− 1
R

)
(5)

where β′ = −
∫∫ Q(Ti)

4πε0a3 z
2(3(Q2 + 3Q3)s+ 3(Q1 + 3Q3)t+

3(Q1 +Q2)u) cos2 θ sin θdθdϕ, a is the lattice constant.
According to equation (5), we obtain that the height

h of the potential barrier in the centre of the grain (grain
radius = R) is:

h = h0 −
β′

R
(6)

where h0 is the height of the potential barrier of a single
crystal in the paraelectric phase.
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Now we calculate the relation between the height and
grain radius in the ferroelectric phase. We suppose that
the B ion has a small displacement ∆z along Z ′ axis in
ferroelectric phase. It can be obtained that

∆φA = − 1
4πε0

Q1Q(Ti)
(r + s)3

cos2 θz2

∆φB = − 1
4πε0

Q2Q(Ti)
(r + t)3

cos2 θ(z2 − 2∆zz)

∆φO = − 1
4πε0

Q3Q(Ti)
(r + u)3

cos2 θz2.

The ∆φ caused by a cell is

∆φcell ≈

− Q(Ti)
4πε0

3(Q2 + 3Q3)s+ 3(Q1 + 3Q3)t+ 3(Q1 +Q2)u
r4

× cos2 θz2 +
Q2Q(Ti)

2πε0
1
r3

cos2 θz∆z.

Therefore, the ∆φ caused by part 2 is:

∆φpart2 = β′
(

1
R′
− 1
R

)
+ λ

λ =
∫∫∫

1
a3

Q2Q(Ti)
2πε0

z∆z 1
r cos2 θ sin θdrdθdϕ.

We suppose that the ∆z is a constant. It can be ob-
tained that:

λ =
2
3
Q2Q(Ti)z∆z

ε0a3
ln
R

R′
·

When R → ∞, ln(R/R′) → ∞. Obviously, the value of
∆φpart2 can not be infinite, otherwise paraelectric phase
can not exist. Thus we can deduce that the ∆z is not
a constant when the grain is in a free state. In fact,
the existence of domains can be understood on the basis
of qualitative energetic considerations in an ideally per-
fect ferroelectric crystal. This point is consistent with our
deduction.

For a grain with domain structure, the λ can not be
integrated. Thus we can not obtain a simple relation be-
tween the height h and radius R. The grain size of our
samples is small. Their Curie temperatures are near or
below the room temperature. Therefore, they have a mi-
crodomain or cluster structure at room temperature. For
a microdomain or cluster, the size is very small, and the
structure is unstable. Therefore, the number of crystal
cells with a positive ∆z equals to that of crystal cells
with a negative ∆z approximately in any small region of
a grain. It can be obtained that λ ≈ 0 for our samples.

Obviously, the height of the potential barrier will be
different at different positions in a grain. It causes that the
relaxation frequency has a variation. Thus the relaxation
frequency measured in experiments should correspond to
the height of some particular position of a grain. Now we
calculate the relation between the grain radius R and the
height h of the particular position in paraelectric phase.

Fig. 9. A crystal grain in X′′ − Y ′′ − Z′′ coordinate system.

In Figure 8, we suppose that the particular position
is at (0, 0, δR), 0 ≤ δ ≤ 1. We build an X ′′ − Y ′′ − Z ′′
coordinate system at (0, 0, δR), the three axes of the sys-
tem are along the X ′, Y ′, Z ′ respectively. Now we observe
the sphere and the X ′′ − Y ′′ − Z ′′ coordinate system in
Figure 9. We suppose that the sphere consists of part 3
and part 4. Part 3 is the inner spheric part with radius
(1− δ)R. Its centre is at the origin of the X ′′ − Y ′′ − Z ′′
system. Therefore, the height h at the origin of the coor-
dinate system is:

h = ∆φpart3 +∆φpart4. (7)

The ∆φpart3 and ∆φpart4 are the ∆φ caused by part 3 and
part 4 respectively.

According to equation (6), it can be obtained

∆φpart3 = h0 −
β′

(1− δ)R · (8)

In addition,

∆φpart4 =
∫∫∫
part4

1
a3
∆φcelldV.

In a spheric coordinate system

dV = Sdr =
πr(2δRr − r2 + (1− δ2)R2)

δR
dr.

Therefore,

∆φpart4 =
β′′

R
· (9)

β′′ = (−2−4δ
1−δ2 + 1

δ ln 1+δ
1−δ )

∫∫ Q(Ti)
4ε0a3 z

2(3(Q2 + 3Q3)s
+3(Q1 + 3Q3)t+ 3(Q1 +Q2)u) cos2 θdθdϕ.

According to equations (7–9), it can be obtained

h = h0 −
β

R
(10)

β = (β′ − (1− δ)β′′)/(1− δ).
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According to equations (2, 10), the relaxation fre-
quency fr is:

fr =
w0

π
exp

(
− h

kT

)
= fr0 exp

( γ
R

)
(11)

where the fr0 is the relaxation frequency of single crystal,
fr0 = (w0/π) exp(− h0

kT ), γ = β/kT .
In equations (10, 11), β/R and γ/R are zero approxi-

mately when R is large. Thus the height h and relaxation
frequency fr are grain size independent in coarse grained
ceramics. Now we suppose that the R is small. According
to equations (10, 11), the change of the height h and re-
laxation frequency fr should be more and more quick with
R decreasing. Obviously, these results are consistent with
the experimental phenomena. In Figure 6, the relaxation
frequency increases with grain size decreasing. Therefore,
the γ should be a positive value in equation (11). Now we
suppose that the Q1, Q2, Q3 , Q(Ti) are +2, +4, −2, +4
respectively, the s, t, u are constant, the δ is 0. Thus we
obtain

γ = β/kT =
−8z2

kT ε0a3
(3u− 2t− s).

So we deduce 3u − 2t − s < 0 from the experimental re-
sult and above equation. Now we observe the distances
between the Ti ion in the centre cell and its neighboring
A, B, O ions. The distance between the Ti ion and O ion
is the smallest. The distance between the Ti ion and B ion
is the largest. Therefore, we can obtain u < s < t for the
neighboring ions of the Ti ion of the centre cell. Obvi-
ously, it can be extended to equation (4). Thus we obtain
3u− 2t− s < 0 and γ > 0. It is consistent with the above
deduction from the experimental result. Furthermore, the
height h should decrease with grain size decreasing due to
3u− 2t− s < 0.

We adjust the fr0 and γ of equation (11), and get
theoretical curves. Figure 6 shows the theoretical curves
for x = 0.7 and 0.3. They both are in good agreement with
the experimental result. The fr0 and γ are 39.5 MHz and
180 nm for x = 0.7, 183 MHz and 105 nm for x = 0.3. It is
a pity that the experimental result of the Ba0.5Sr0.5TiO3

ceramics has a deviation from equation (11). When the
grain size decreases from the bulk size to the ferroelectric
critical size, the change ∆h of the barrier height is

∆h =
2β
Dcrit

=
2γkTr

Dcrit
(12)

where Tr is the room temperature. The calculation shows
that the ∆h for x = 0.7 and 0.3 are 0.0529 eV and
0.0171 eV respectively. The former is much higher than
the latter. It gives an approximate explanation on the
fact that the bulk Curie temperature of Ba0.7Sr0.3TiO3

is higher than that of Ba0.3Sr0.7TiO3 obviously.
In the above model, the crystal lattice is supposed to

be in perfect order. In real ceramics, macroscopic stresses
between the grains and in the grains will causes a ran-
dom distortion of the lattice. The distortion will decrease
the symmetry of the lattice, and decrease the effect of the

long-range Coulomb potential. Thus the random stresses
tend to decrease the height h and suppress the ferroelec-
tricity. In our previous work, some BaTiO3 samples pre-
pared by the sol-gel method were chosen to make a high-
resolution transmission electron microscopic study [19].
The study shows that their lattice is in perfect order. It
means that the effect of the stress is faint in our samples.
The porosity of ceramics is a considerable problem. The
air can not influence the relaxation measurement. How-
ever, the decrease of the porosity means that the Coulomb
potential caused by a grain could influence the dielectric
behaviors of its neighboring grains. The direction of a
grain in ceramics is arbitrary. It means that the interac-
tion among grains can not change the height h and the re-
laxation frequency fr obviously. However, the interaction
among grains could change the dielectric constant. When
an electric field is applied to the ceramics, every grain
is polarized by the applied field. The polarization locally
modifies the applied field in the surrounding air. It means
the change of the dielectric constant. When only small
volume fraction of grains is present the influence among
grains, is negligible and so the prediction of the potential
by using the isolated grain model is physical reasonable.
The porosity of our sol-gel derived samples is high. It is
advantageous to use the isolated grain model.

According to our experimental results and above dis-
cussion, we can draw the following conclusions. The height
h in the centre of coarse grained ceramics is grain size in-
dependent, while for fine grained ceramics, the height h
is more and more quickly decreased with grain size de-
creasing. The decrease of the height h will facilitate the
hopping of Ti ion among the potential wells. It will lead
to a reduction and suppression of possible ferroelectricity.
According to the change of the height h with grain size, it
is easy to understand the fact that the ferroelectricity in
coarse grained ceramics is similar to that of single crystal,
while ferroelectricity of fine grained ceramics is suppressed
rapidly with grain size decreasing.

An analogy can be drawn among ferroelectric phase
transitions in nanocrystals, the magnetic phase transi-
tions in nanocrystals [20–22] and other solid-solid phase
transitions in nanocrystals [23]. Magnetic nanocrystals be-
have as single domains, which at high temperatures are
superparamagnetic and respond to an applied field with
no hysteresis. As the system is cooled below the “block-
ing temperature”, the magnetization versus applied field
shows hysteresis, including remanence (residual magneti-
zation after the applied field is turned off). The character-
istic relaxation time for this hysteresis follows the simple
equation

τ1/2 ∝ exp
(
KV

kBT

)
+ surface term

where K is the crystalline anisotropy and V the volume of
the crystal [24,25]. In crystals above a certain size, multi-
ple magnetic domains are observed, and this equation no
longer applies. Furthermore, the size dependence of struc-
tural metastability in semiconductor nanocrystal system
CdSe was observed by Chen et al. [23]. Barrier heights
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were observed to increase with increasing nanocrystal size.
In ferroelectric phase transitions, nanocrystals below a
certain size behaves as single structural domains, and the
kinetic barrier “blocking ” the transition can cause the
system to be metastable. These results all suggest that
general rules may be of use in the explanation of new
metastable phases in a solid.

In Figure 6, it seems that the relaxation frequency in-
creases with x decreasing at least when the grain size is
near and larger than 1 µm. It is easily understandable if we
take into account the facts that the critical slowing down
of the relaxation exists in BaxSr1−xTiO3, that the Tc of
BaxSr1−xTiO3 decreases with x decreasing, and that the
dielectric measurement was carried out at room tempera-
ture for all the samples with different x. This phenomenon
can further be discussed according to equation (3). In
equation (3), the second term is a repulsive interaction.
It can make the Ti ion stay at the centre of a cell. In fact,
the Ti ion does not stay at the centre. Thus we can deduce
that the displacement of Ti ion should be attributed to the
Coulomb interaction. For BaTiO3, the cell size decreases
when Sr ion substitutes the Ba ion. Therefore, the rij in
equation (3) has a decrease. According to equation (3), the
decrease of rij can increase both the Coulomb interaction
and the repulsive interaction. Since the increase of the re-
pulsive interaction is larger than that of the Coulomb in-
teraction, the deviation of the Ti ion from the centre of the
crystal cell will decrease. With the tendency continuing,
the repulsive interaction will make the Ti ion go to the cen-
tre of the crystal cell in the end. Thus the height h is 0. In
reference [18], the molecular-dynamics calculation showed
that the calculated SrTiO3 structure was cubic. Thus it
can be obtained that the height h in SrTiO3 is zero. For
BaxSr1−xTiO3, if the change of the h is monotonic with
x changing from 1 to 0, we can obtain the conclusion that
the h decreases with x decreasing. The conclusion can be
proved by the cell effect of BaxSr1−xTiO3 indirectly [9,10].
In our previous work [9,10], it is argued that the variation
of the ferroelectricity in BaxSr1−xTiO3 is determined by a
change in the cell volume whether the change is produced
by a change in pressure or a change in composition. In
BaTiO3, the relation among the cell volume, the barrier
height, and the ferroelectricity has been proved by Cohen
et al. [1]. Thus the decrease of x for BaxSr1−xTiO3 causes
the decrease of the cell volume and the barrier height.
The oscillation frequency (w0/2π) should have an increase
because of the decrease of the cell volume. According to
equation (2) and the above two factors, we can obtain the
conclusion that the relaxation frequency increases with
decreasing x.

For the BaxSr1−xTiO3 samples, we found that the
diffusion of their dielectric peaks gave some useful in-
formation. Figure 10 shows the relation between the fr

and the temperature width ∆T at 75% of εmax (∆T =
T0.75ε(max)−Tε(max) for T0.75ε(max) > Tε(max)) for x = 0.7,
0.5, 0.3. For BaxSr1−xTiO3, we think that the increase of
the ∆T reflects the suppression of the ferroelectricity. In
Figure 10, it seems that the ∆T is corresponding with the
fr for different samples. For BaxSr1−xTiO3, the change of

Fig. 10. Relation between the relaxation frequency and ∆T
for BaxSr1−xTiO3 ceramics.

the lattice constant is only about 1% when x changes from
0.7 to 0.3. Thus the change of the oscillation frequency in
equation (2) is very small. According to equation (2) and
Figure 10, it seems that the ferroelectricity is correspond-
ing with the height h for BaxSr1−xTiO3 ceramics. Thus
the existence of a multi-site potential structure (the height
h > 0) is a prerequisite for the existence of the ferroelec-
tricity of BaxSr1−xTiO3 ceramics.

According to our work, the anisotropy of the dielectric
constants in perovskite structure can be explained by the
eight-site potential model. As reported by reference [26],
the εc and εa of BaTiO3 single-domain crystals are 200 and
4000 respectively at room temperature. In the tetragonal
phase, the Ti ions preferentially occupy four of the eight
sites, giving a net polarization along c-axis. Therefore, an
electric field along a-axis can cause an additional hopping
of Ti ions in four sites. It results in a greater dielectric
constant εa. An electric field along c-axis can not cause
such an additional hopping. Thus the εc is much smaller.

4 Summary

For BaxSr1−xTiO3 system, the transition temperature
Tc decreases and the transition becomes diffuse as the
grain size decreases. Our experiments and model have ev-
idenced a size dependence of relaxation frequencies and
barrier heights at room temperature for BaxSr1−xTiO3

with x = 0.7, 0.5, 0.3. The relaxation frequency fr in-
creases rapidly with grain size decreasing for fine grained
ceramics, and it is independent of the grain size for coarse
grained ceramics. Our model explains the fact that the
grain size affects the barrier height and therefore changes
the relaxation characteristics and the structural metasta-
bility. For x = 0.7, 0.3, this model is in quantitative agree-
ment with the experimental results. The decrease of x
causes the decrease of the barrier height, and the increase
of the relaxation frequency. The appearance of ferroelec-
tricity and anisotropy of the dielectric constant have an
intimate relation with the barrier height of the eight-site
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potential. It seems that the kinetics of ferroelectric phases
can be understood more clearly in nanocrystals according
to the potential distribution.
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